CRYSTAL STABILITY OF THE PHASE Ca2Fe2O5 WHEN USED IN HETEROGENEOUS PHOTOCATALYSIS

da Silva, E. B.*; Valentini, A.

Department of Analytical Chemistry and Physical Chemistry, Federal University of Ceará, Fortaleza, Ceará, Brazil

*erandirbrasildasilva@yahoo.com.br

In the field of academic study has been proposed to use Ca₂Fe₂O₅ phase as applicable material in heterogeneous photocatalysis for degradation of organic compounds such as dyes. However, it is unclear the real applicability of this compound and little is known about the phase stability under reaction conditions. Thus, a suitable study is necessary, the interaction of this crystalline phase with carbon dioxide in aqueous solution. By means of monitoring of structural composition using X-ray diffraction, before and after various reaction conditions with the change of the bubbling gas used in the reaction system, was verified low stability of Ca₂Fe₂O₅ phase under reaction conditions, when applied on the degradation of dyes in aqueous system. Lower conversion efficiency was observed when the process was carried out in the presence of CO₂; although, the instability of Ca₂Fe₂O₅ phase was observed also under N₂, air or CO₂. The degradation of the crystalline phase Ca₂Fe₂O₅ (orthorhombic) occurs in a complete way in a short reaction time. The XRD patterns pointed out the CaCO₃ phase formation, additionally suggest the formation of FeO(OH) and CaFe₂O₄ phases.