Thermo-Visco-Plasticity and Creep Analysis of Thick-Walled Pressure Vessels made of Functionally Graded Materials

Saifulnizan Jamian1,2, Hisashi Sato2, Hideaki Tsukamoto2, and Yoshimi Watanabe2

1Department of Engineering Mechanics, Universiti Tun Hussein Onn Malaysia, Parit Raja, Batu Pahat 86400, Malaysia
2Department of Engineering Physics, Electronics and Mechanics, Nagoya Institute of Technology, Nagoya 466-8555, Japan

Abstract

In this study, a solution procedure for finite element thermo-visco-plasticity and creep analysis in a functionally graded materials (FGMs) thick-walled pressure vessel subjected to thermal and internal pressure was studied. The structure is replaced by a system of discrete rectangular cross-section ring elements interconnected along circumferential nodal circles. The property of FGMs is assumed to be continuous function of volume fraction of material composition. The thermo-visco-plasticity and creep behavior of the structures are obtained by the use of an incremental approach. The obtained results show that the material composition significantly affects the stress as a function of time at the inside and outside surface of thick-walled pressure vessel. The use of FGMs can adjust the stress distribution in the structure.

Keywords: Thermo-visco-plasticity analysis, Creep analysis, Pressure vessel, FGMs