Recycling for sequences of linear systems by proper orthogonal decomposition augmented Krylov subspaces

Kevin Carlberg¹, Paul Tsuji², Virginia Forstall³

¹Sandia National Laboratories, ktcarlb@sandia.gov
²Sandia National Laboratories, phtsuji@sandia.gov
³University of Maryland, vhfors@gmail.com

Abstract

Sequences of sparse linear systems \(A_i x_i = b_i, i = 1, \ldots, n \) arise in many applications, including iterative methods for PDE-constrained optimization. In such cases, inexact solves are often sufficient to guarantee convergence, wherein a forcing sequence \(\{ \eta^i \}_{i=1}^n \) defines modest solver tolerances \(\eta^i > 0 \) such that the computed solutions \(\tilde{x}_i \) satisfy \(\| A_i \tilde{x}_i - b_i \|_2 \leq \eta^i \). Krylov-subspace recycling methods accelerate convergence for such problems by reusing (truncated) information generated during the solution of previous linear systems. In particular, they search for solutions in the subspace \(K_m + Y \), where the subspace \(Y \) contains information from previous solves and ‘augments’ the Krylov subspace \(K_m \). Existing recycling techniques (e.g., deflation, optimal truncation) are tailored to improve convergence toward exact solutions; as a result, they do not always realize convergence acceleration when inexact solutions are sought. Instead, we propose a recycling technique inspired by model reduction that aims to efficiently compute inexact solutions. In particular, we construct \(Y \) by a goal-oriented proper orthogonal decomposition (POD) of previous search directions, where the POD inner product enables efficient computation of solutions in \(Y \).

Keywords: Krylov-subspace recycling, model reduction, sequence of linear systems, truncation