A tandem ring-closing/cross-coupling metathesis reaction toward the short synthesis of goniothalamin analogs

Marjorie Bruder*, Ronaldo Aloise Pilli
IQ-UNICAMP (D-353), Caixa Postal 6154, 13083-862 Campinas, SP - Brasil
mbruder@iqm.unicamp.br

Keywords: butenolides, goniothalamin analogs, metathesis

INTRODUCTION

In view of preparing furanone analogs – exemplified by compound 1 – of the cytotoxic naturally occurring styryl lactone goniothalamin (2), we envisioned a key cross-coupling metathesis reaction between vinyl furanone 3 and a range of styrenes.

![Figure 1. Cytotoxic goniothalamin (2) and an analog (1).](image1)

Inspired by the work of Piva et al. where 3 would be formed in situ via ring-closing metathesis of triene 4, we herein report the short synthesis of a variety of styryl furanones using a key tandem ring-closing/cross-coupling metathesis (RCM/CCM) step.

RESULTS AND DISCUSSION

Pentadienyl ester (4, R1=H, R2=Me) was readily prepared from pentadienyl-3-ol and crotonoyl chloride upon treatment with sodium hydride. Reacting a mixture of compound 4 and excess styrene with Grubbs’ second-generation catalyst (GII) under highly diluted conditions at reflux, delivered the desired styryl butenolide (1).

![Scheme 1. Short synthetic route to styryl furanones.](image2)

Although the conversion of the starting ester 4 appeared complete by TLC analysis, the yield of the desired furanone was generally poor (<30%), mostly due to partial decomposition on silica gel (as demonstrated by 2D-TLC).

The process was repeated using different styrenes (R2-vinyl), that were either commercially available or readily prepared from the corresponding aldehydes via Wittig olefination.

![Figure 2. Goniothalamin analogs prepared.](image3)

CONCLUSION

A group of styryl furanones was prepared via a highly convergent strategy using tandem metathesis reactions as key step. Although the yields are low, this is a rapid way to access substrates for evaluation of their cytotoxicity toward a range of cancer cell lines.

Future work will probe the stability of α-phenyl-substituted analogs (R1 = Ph), using the same tandem reaction under appropriate conditions (solvent / temperature, catalyst).

ACKNOWLEDGEMENTS

We thank FAPESP (Proc. 2009/51602-5 and 2010/06178-8) for financial support.

REFERENCES