Synthesis of Combretastatin A-4 Analogs with Antitumoral Properties

Natércia M. M. Bezerra,¹ Gardênia C. G. Militão,² Terezinha G. da Silva,² Paulo H. Menezes¹ and Roberta A. Oliveira¹

¹Departamento de Química Fundamental, CCEN, UFPE, 50670-901, Recife-PE
²Laboratório de Bioensaios para Pesquisa de Fármacos, Departamento de Antibióticos, UFPE, Recife-PE
*naterciambmb@yahoo.com.br

Keywords: combretastatin A-4, potassium arytrifluoroborates, vinyl tellurides

INTRODUCTION

Combretastatin A-4 (CA-4) (Figure 1), a natural Z-stilbene isolated from the South African willow Combretum caffrum, has been found to strongly inhibit the tubulin assembly by binding to the colchicine site and to be a cytotoxic agent against a wide variety of cell lines, including multidrug-resistant lines.¹

![Figure 1: Combretastatin A-4](image)

The structural simplicity of CA-4 combined with its excellent antitumor and antivascular activities encouraged the scientific community to synthesize numerous analogs. From these structure–activity relationship (SAR) investigations, it has been established that the cis-orientation of the two aryl rings is crucial for the activity of CA-4 as well as the trimethoxyaryl unit, whereas, the hydroxyl group on the 3’-position is not essential. Consequently, the synthesis of CA-4 analogs for further studies of their biological activities is of the great interest.

RESULTS AND DISCUSSION

The strategy to assemble the Z-double bond of CA-4 analogs was initially based on the use of the hydrotelluration reaction (Scheme 1).

![Scheme 1](image)

The desired tellurides were obtained in good to moderate yields, with exclusive Z stereochemistry in all cases. These compounds were then submitted to a Suzuki cross-coupling reaction with potassium arytrifluoroborates² to give the desired stilbenes in good to moderate yields, being one feature of the method the tolerance of functional groups in both substrates (Scheme 2).

![Scheme 2](image)

In vitro antiproliferative activity of the synthesized stilbenes was determined against different cell lines. The A3 analog showed high citotoxicity against HL-60 cells (leukemia) with a IC₅₀ of 0.2 μg/mL.

CONCLUSION

In summary, several functionalized stilbenes were synthesized in good yields. These compounds showed good antiproliferative activities against tumor cell lines. The hydrotelluration reaction was used to assemble the Z double and further cross-coupling reaction with potassium arytrifluoroborates gave the desired analogs in a short synthetic pathway.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge CNPq, CAPES, FACEPE and INCT-INAMI for the financial support.

REFERENCES