Docking and Synthesis of a series of 1-(naphthalen-1-ylmethyl)-2-(pyridin-2-yl)-1H-benzo[d]imidazole derivatives designed as novel CB1 cannabinoid ligands.

Mella-Raipán, J.*.; Lagos, C. F.; Romero-Parra, Espinosa-Bustos, C J.; Pessoa-Mahana, H.; Recabarren-Gajardo, G.; Pessoa-Mahana, C. D.

Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Casilla 306, Santiago 22, Chile.

*jamella@uc.cl

Keywords: benzimidazoles, cannabinoids, heterocycles
INTRODUCTION

The benzimidazole system has been a focus of our attention owing to their affinity to CB$_2$ cannabinoid receptors1,2,3. However, there are few reports of their CB$_2$ receptors affinity4. A preliminary screening of our library of benzimidazole derivatives yielded the lead compound C6 (Figure 1), a potent cannabinoid ligand4. This molecule is structurally related to WIN 55212-2, a well-known CB$_2$ receptor agonist5. In order to generate new CB$_2$ ligands with a benzimidazole framework, we made a docking study on a CB$_2$ model, and we identified four possible zones of chemical modification (Figure 1). Following this criteria we synthesized a series of 48 molecules which are being currently biologically evaluated (binding assays).

RESULTS AND DISCUSSION

The 48 compounds were synthesized with high yields in a two steps sequence (Figure 2). Primarily, a oxidative condensation of the substituted o-phenalenediamine with the respective pyridine carboxaldehyde in ethanol in presence of a catalytic amount of CAN and H$_2$O$_2$ allows to obtain the benzimidazoles. In a second step, the benzimidazoles were acylated with 1 or 2- naphthyl chloride or alkylated with 1 or 2 naphthyl bromide to give the target compounds.

![Figure 1. Structures of WIN 55212-2 and C6. In red circles the possible modification areas according the docking study.](image)

![Figure 2. Synthetic route for the target compounds](image)

CONCLUSION

We complete the synthesis of a series of novel benzimidazoles structurally related to WIN 55212-2. The biological-assays are in progress. Once the IC$_{50}$ will be obtained, a QSAR study is considered in order to direct the synthesis of improved novel molecules.

ACKNOWLEDGEMENTS

The authors are grateful to FONDECYT (grant no. 1100493) for their support. We thank CONICYT for doctoral support.

REFERENCES

4. PATENT WO/2007/120101